Принцип работы магнитного толщиномера

Принцип работы магнитного толщиномера

Толщиномер (неправ. толщинометр) — это измерительный прибор, позволяющий с высокой точностью измерить толщину материала или слоя покрытия материала (такого как краска, лак, грунт, шпаклёвка, ржавчина, толщину основной стенки металла, пластмасс, стекла, а также других неметаллических соединений, покрывающих металл). Современные приборы позволяют измерить толщину покрытия без нарушения его целостности.

Содержание

Сфера применения [ править | править код ]

Применяется в автомобильной, судостроительной промышленности для контроля качества лакокрасочного покрытия транспортных средств, в ремонтных работах, для определения состояния кузова или обшивки по результатам эксплуатации.

В строительстве применяется для определения толщины покрытия металла, имеющего в своём составе противопожарные, антикоррозийные и другие виды компонентов, используемые при создании конструкций зданий.

Толщиномер применяется в работе экспертов-оценщиков, страховщиков, профессиональных полировщиков, контролирующих качество проведения покрасочных работ.

Виды толщиномеров [ править | править код ]

Толщиномеры делятся по принципу их работы, сфере применения, а также способу произведения измерений на:

  • механические
  • электромагнитные
  • ультразвуковые
  • магнитные
  • вихретоковые
  • электромагнитновихретоковые

Механические толщиномеры [ править | править код ]

Толщиномер мокрого слоя предназначен для оперативного контроля неотвердевших лакокрасочных покрытий, чтобы затем сделать выводы о толщине сухой плёнки. Контроль толщины наносимого лакокрасочного покрытия позволяет избежать возникновения проблем связанных с укрывистостью, скоростью сушки, внешним видом покрытия, перерасходом краски и т.д. Толщиномеры мокрого слоя изготавливаются из пластмассы, алюминия или нержавеющей стали согласно требованиям стандартов ISO 2808-2007, ASTM D 4414 (гребёнка), ASTM D 1212 (колесный толщиномер), ГОСТ Р 51694-2000. При контроле толщины мокрого слоя с помощью гребёнки, последнюю вдавливают в покрытие перпендикулярно поверхности и прижимают до основания. Через несколько секунд её извлекают для осмотра. Толщина мокрого слоя находится в диапазоне между максимальным значением «мокрого» зубца и минимальным значением «сухого» зубца гребёнки.

Электромагнитные толщиномеры [ править | править код ]

В приборах данного вида для измерений используются как магнитная индукция, так и эффект Холла, позволяющий проводить измерения плотности магнитного поля. Для создания магнитного поля чаще всего используется мягкий ферромагнитный стержень с катушкой. Также, в свою очередь, для обнаружения каких-либо изменений в магнитном потоке применяется второй стержень с катушкой. Толщина покрытия определяется путём измерения плотности магнитного потока. Допустимый процент погрешности измерений для приборов данного типа равен ± 3%.

Вихретоковые толщиномеры [ править | править код ]

Для проведения измерений непроводящих покрытий без их разрушения используются толщиномеры с вихретоковым принципом действия. На поверхности зонда прибора с помощью тока (с частотой от десятков КГц до единиц МГц), проходящего через катушку, на которую намотана тонкая проволока, генерируется переменное магнитное поле. При приближении зонда к токопроводящей поверхности, переменное магнитное поле генерирует на ней вихревые токи (токи Фуко). Вихревые токи создают собственные (противоположные первичному) электромагнитные поля, которые могут быть измерены основной или второстепенной обмоткой. Вихретоковый метод используется преимущественно для хорошо проводящих поверхностей, в частности сделанных из цветных металлов (например алюминий). Величина напряжения на измерительной обмотке (измеряемая величина) зависит от расстояния от неё до электропроводящей поверхности, которая и является толщиной непроводящего покрытия.

Ультразвуковые толщиномеры [ править | править код ]

Для ультразвуковых толщиномеров характерно наличие ультразвукового датчика в зонде, который посылает импульс через анализируемое (чаще всего неметаллическое) покрытие. Импульс отражается от поверхности и затем преобразуется датчиком в высокочастотный электрический сигнал. Эхо сигнала оцифровывается и анализируется для определения толщины покрытия. Допустимый процент погрешности измерений для приборов данного типа равен ± 3%.

Преимущества использования ультразвуковых толщиномеров:

Ультразвуковые толщиномеры часто используются в ситуациях, когда имеется доступ только к одной стороне поверхности изделия, толщина которого должна быть определена, например: трубопроводы или в тех местах, где простые механические измерения невозможны или нецелесообразны по другим причинам, таким как, размер изделия или ограниченный доступ. Факт того, что измерение толщины может быть сделано легко и быстро с одной стороны, без необходимости вырезания какой-либо части, является главным преимуществом использования ультразвукового толщиномера. Практически любой конструкционный материал может быть измерен с помощью ультразвука. Ультразвуковой толщиномеры может быть использован для металлов, пластмасс, композитов, стекловолокна, керамики и стекла.

Ультразвуковой контроль является одним из методов неразрушающего контроля без необходимости резки или секционирования. Диапазон измерений зависит от материала и выбранного преобразователя, и может быть в пределах от 0,08 мм до 635 мм. (Как правило такие материалы как: дерево, бетон, бумага и пенопласта обычно не подходят для измерения с обычными ультразвуковыми датчиками).

Все ультразвуковые толщиномеры работают на основе очень точного измерения времени необходимого звуковому импульсу, сгенерированному преобразователем, для прохождения через тестовый образец. Поскольку звуковые волны отражаются от поверхности материала, измерение эхо от дальней стороны образца может быть использовано с целью измерения его толщины, таким же образом, как радар или сонар для измерения расстояния. Разрешение может быть в пределах 0,001.

Читайте также:  A14net какое масло лить

Ультразвуковой толщиномер имеет ряд преимуществ по сравнению механическим и оптическим методами измерения в производстве и эксплуатации, с целью контроля качества, надёжностью и мониторинга состояния. Современный ультразвуковой толщиномер — экономически эффективный и удобный способ для проведения неразрушающего контроля.

• Измерение с одной стороны: Ультразвуковой толщиномер может быть использован в тех случаях, когда имеется доступ только к одной стороне поверхности, для толщинометрии таких объектов как: трубопроводы, резервуары, контейнеры, полые отливки, крупные металлические или пластмассовые листы, и тд.

• Полностью неразрушающий метод: нет необходимости резки или среза деталей. Экономия материала и затрат на рабочую силу. • Высокая надёжность: Современный цифровой ультразвуковой толщиномер обладает высокой точностью и надёжностью.

• Универсальность: Все стандартные конструкционные материалы, могут быть измеренны с соответствующими установками, в том числе металлы, пластмассы, композиты, стекловолокна, керамика и резина. Большинство толщиномеров могут быть запрограммированы с несколькими установками.

• Широкий диапазон измерения: Ультразвуковые толщиномеры в различных комплектациях могут быть использованы для измерений широкого диапазона толщин, от 0,08 мм до 635 мм, в зависимости от материала и выбора толщиномера.

• Простота в использовании: Большинство настроек ультразвукового толщиномера запрограммированы и требуют минимальных навыков для применения.

• Мгновенный результат: Измерения обычно требуют одну или две секунды на точку и выводятся в виде цифровой индикации.

• Совместимость с регистрацией данных и программами статистического анализа: Большинство современных портативных толщиномеров имеют как внутреннюю память для хранения данных, так и USB или RS232 порты для передачи данных об измерениях на компьютер для учёта и дальнейшего анализа.

Магнитные толщиномеры [ править | править код ]

Принцип работы магнитных толщиномеров основан на использовании свойств постоянных магнитов. Позволяют производить замер немагнитных покрытий нанесённых на магнитные основания. Процесс замера осуществляется на основе оценки силы взаимодействия магнита толщиномера и основания измеряемого покрытия. Изменение толщины покрытия изменяет силу взаимодействия магнита и основания измеряемой специально откалиброванной шкалой.

Товары

Услуги

Полезная информация

  • Главная ::
  • Магнитный контроль ::
  • Магнитные толщиномеры покрытый ::
  • Магнитные толщиномеры – виды, возможности, недостатки

Магнитные толщиномеры – виды, возможности, недостатки

Магнитные толщиномеры предназначены для контроля толщины немагнитных покрытий на ферромагнитном основании. В отличие от вихретоковых они как правило позволяют, измерять в равной степени толщину и диэлектрических, и электропроводящих покрытий. Наиболее часто магнитные толщиномеры применяются для таких сочетаний основания и покрытия как изоляция на стальных трубах, краска на стали, хром на стали и т.д. Недопустимыми сочетаниями для магнитных толщиномеров являются краска на алюминии, краска на дереве или пластике, незастывшая краска. По принципу действия все магнитные толщиномеры можно подразделить на три группы: 1) пондеромоторного действия, 2) индукционные; 3) магнитостатические.

Пондеромоторный метод основан на регистрации силы отрыва постоянного магнита или сердечника электромагнита от поверхности изделия и на оценке толщины контролируемого покрытия по значению этой силы. В первом случае сила определяется при помощи пружинных динамометров, во втором – по изменению тока намагничивания. Часть приборов работающих по данному принципу, особенно стационарного типа, уже потеряла практический интерес, так ка в последние годы были разработаны более совершенные устройства. Из приборов данной группы, сохранивших актуальность в настоящее время, следует выделить миниатюрные толщиномеры, которые работают по методу прямого отрыва (по ГОСТ 31993-2013 (ISO 2808:2007). Таких толщиномеров два типа:

  • карандашного типа. Суть их работы заключается в притяжении измерительного магнита к ферромагнитной поверхности через покрытие. Сила притяжения магнита зависит от толщины покрытия. Данная зависимость механически конвертируется в толщину покрытия на стрелочном индикаторе.
  • рычажного типа, конструкция которых обеспечивает компенсацию веса магнита в любом положении. Приборы рычажного типа позволяют осуществлять контроль различных немагнитных покрытий, с толщиной до 10 мм. По сравнению с толщиномерами карандашного типа они обеспечивают более высокую точность измерений, особенно при контроле покрытий на изделиях с плоской поверхностью. Применение этих приборов для измерения толщины покрытий на изделиях сложной формы затруднено. (на фото толщиномер покрытий MikroTest немецкой компании ElektroPhysik.

К общим недостаткам всех магнитно-отрывных толщиномеров с постоянным магнитом следует отнести изнашивание наконечника магнита, которое влияет на градуирование прибора, и загрязнение магнита различными веществами или ферромагнитными опилками. Кроме того, серьезным недостатком является эффект механического прилипания магнита к поверхности, а при контроле мягких покрытий, например, лакокрасочных, — проникновение магнита в покрытие. Необходимо также отметить, что используемые в приборах пружины в процессе эксплуатации изменяют упругие характеристики. Перечисленные факторы могут привести к дополнительным погрешностям измерений, значительно превосходящим значение основной погрешности, предусмотренной техническими условиями на прибор. Это требует тщательной подготовки таких толщиномеров к работе и, при необходимости, своевременного ввода соответствующих поправок.

Читайте также:  Коробка передач камаз евро 3

Индукционные толщиномеры не имеют большинства недостатков пондеромоторного метода и получили наиболее широкое распространение среди толщиномеров магнитного типа. Принцип их действия основан на измерении изменений магнитного сопротивления цепи, состоящей из ферромагнитной основы изделия, измерительного преобразователя и немагнитного зазора между ними, соответствующего толщине покрытия. Индукционный измерительный преобразователь запитывается синусоидальным током. По сравнению с толщиномерами пондеромоторного действия индукционные толщиномеры обладают значительно более высокой точностью измерений (обычно 3% измеряемого значения), процесс измерения в них идет практически непрерывно, что значительно его упрощает и ускоряет.

Магнитостатические толщиномеры – третья группа магнитных толщиномеров. Принцип их действия основан на определении напряженности магнитного поля в зазоре между постоянным магнитом (или электромагнитом) и ферромагнитным материалом основы. В большинстве магнитных толщиномеров используется двухполюсная магнитная система с постоянными стержневыми и П-образными магнитами. Простейшими приборами такого типа являются толщиномеры, в которых сочетается применение П-образного магнита и механической магнитоуравновешенной системы, расположенной в межполюсном пространстве магнита.

На фото магнитный магнитостатический толщиномер ElektroPhysik MiniTest FH-7400

Магнитостатические толщиномеры имеют более простую схемную реализацию и более технологичный в исполнении измерительный преобразователь (отсутствует необходимость намотки катушек), это делает их развитие более перспективным по сравнению с индукционными толщиномерами. Другим важным преимуществом магнитостатических толщиномеров является отсутствие переменного магнитного поля, создаваемого измерительным преобразователем и приводящего к потерям на вихревые токи при контроле электропроводящих немагнитных покрытий. При имеющихся преимуществах двухполюсных систем они имеют недостатки. Такие толщиномеры чувствительны к анизотропии свойств и к шероховатости ферромагнитного основания; кроме того, при их использовании необходимо обеспечивать одинаковый и надежный контакт полюсов преобразователя с контролируемой поверхностью.

При работе с магнитными толщиномерами необходимо учитывать многочисленные факторы, влияющие на результаты измерений: колебания магнитных свойств покрытия или основы, состояние поверхности, форму изделия и др. В значительной мере влияние этих факторов обусловлено размерами и формой магнита, топографией и напряженностью магнитного поля. В связи с возросшими требованиями к точности и надежности производственного контроля толщины покрытий резко возросли требования к их поверке и калибровке. Для метрологического обеспечения толщинометрии покрытий производятся специальные образцы с разными сочетаниями материалов покрытия и основы. Большое число вновь разрабатываемых и применяемых материалов исключает возможность серийного выпуска всей гаммы эталонных образцов, поэтому важнейшей задачей, стоящей перед разработчиками приборов магнитной толщинометрии, является создание безобразцового метода измерения толщины покрытий. Для проведения толщинометрии покрытий на опасных производственных объектах необходима аттестация по магнитному методу неразрушающего контроля.

Магнитный толщиномер покрытий считается более продвинутым способом узнать, насколько же надежным является слой краски на изделии. Почему он такой технологичный, но не так популярен, мы обсудим в этой статье.

Как работает толщиномер с магнитной хваткой?

Современные технологии приборостроения позволяют специалистам получить данные бесконтактными способами. Чтобы увидеть то, что скрыто внутри двигателя, механизма, организма человека, давно не нужно разбирать объект исследования. Медицина имеет на вооружении аппараты ультразвуковой диагностики и прочие достижения науки, а в технике применяются схожие по принципу действия приспособления, например, толщиномеры и прочие устройства, позволяющие с легкостью получить точные данные об исследуемом объекте. Чтобы, к примеру, исследовать двигатель автомобиля, нужен технический эндоскоп, а для внешнего обследования кузова – толщиномер.

Толщиномеры покрытий – это вид узкоспециализированных приборов, предназначенных для поверхностного изучения объекта. Как понятно из названия, они измеряют толщину. Представьте себе, что на металлическом основании, то есть поверхности, имеется какое-либо покрытие. Это может быть краска, лак, стекло, ржавчина, пластик, полимер, грунт… Словом, основание обязательно должно быть металлическое, а покрытие – неметаллического происхождения. Магнитные толщиномеры предназначены для точного измерения толщины покрытия относительно основания (из черных металлов).

Действуют они по принципу магнитной индукции, отмечая сопротивление магнитной цепи и воздействие на неё толщины покрытия. Снимаемые показания фиксируются прибором в порядке: основание – покрытие – датчик. Существуют другие виды толщиномеров (не магнитные), которые предназначены для получения данных о покрытии с основанием из цветных металлов. Они действуют по принципу вихревых токов, и о них будет рассказано ниже. Сейчас поговорим о магнитных типах этих приборов.

Где авторитетно показание толщиномера?

Магнитный толщиномер лакокрасочных покрытий чрезвычайно полезен в станкостроении, автомобилестроении, судостроении и самолетостроении. К примеру, во время производственного процесса требуется получить данные о толщине хромового покрытия на торцах плоских деталей, проконтролировать наличие брака или измерить толщину покрытия готовых колец компрессионных двигателей внутреннего сгорания.

Кроме того, магнитные толщиномеры применяются отделами технического контроля, лабораториями, специализированными мастерскими и просто в ремонтных работах. Его показаниям доверяют эксперты-оценщики страховых компаний и другие лица, заинтересованные в измерении толщины покрытия. В основу работы прибора положен принцип использования свойств постоянных магнитов. Магнитное основание, на которое нанесено покрытие (объект измерения), взаимодействует с магнитом, встроенным в прибор.

Сила этого взаимодействия и является базовым показателем измерения толщины поверхности: чем слабее сила, тем толще покрытие.

Как правильно работать с прибором?

Пользоваться толщиномером несложно: не требуются специальные технические навыки. Прибор подносят к объекту, прижимают щупом к поверхности, и датчик, который встроен в этот щуп, измеряет показания от конца датчика до основания. Через короткое время, после звукового сигнала, на экране появляется результат. Возможна постановка задачи для однократного измерения, возможна настройка периодического обновления показаний через равные промежутки времени. Таким образом, измеряется толщина покрытия. Некоторые модели (например, МТ-201К) имеют в комплекте столик для снятия показаний.

Читайте также:  Чем питаются пауки зимой

В работе устройства существуют некоторые ограничения, упомянутые в его технических характеристиках. На том, что нежелательно, остановимся подробнее. Самым главным является то, что магнитный прибор не способен к работе с основаниями из других материалов, кроме ферромагнитных. Об этом было сказано вначале, когда шла речь о принципе работы прибора. Как определить пригодность металлического основания? Нужно поднести к нему магнит. Если притяжение ощутимо, значит основание годно к измерению магнитным толщиномером. Если притяжение заметно слабое, то придется использовать другой вид прибора. Основания из дерева, пластика, таких металлов, как медь и алюминий, не пригодны для работы с описываемым прибором. Также невозможна работа с сырым покрытием.

Какие ещё покрытия могут выдать погрешность в расчете данных? Это никель, краска с примесью железа (если окрашивание было произведено по ржавому металлу), покрытия, подверженные деформации. Поролон, пенопласт – тоже не желательны для исследований. Полученные данные будут точнее, если основание будет однородным, а не представляет собой прикрепленные друг к другу пластинки. Это связано с тем, что сочетание близко расположенных металлических пластин будет вызывать наложение их магнитных полей друг на друга.

Ещё одним противопоказанием к работе является слишком тонкое основание. Если его толщина меньше, чем 0,5 миллиметров, то точность измерения снижается (не очень значительно). Диаметр основания тоже имеет значение: если он меньше 10 миллиметров, это также нежелательно. Бывают случаи, когда данные на выходе должны быть уточнены согласно эталонным. Это случаи, когда основание слишком тонкое (0,3-0,5 мм), либо слишком толстое (свыше 5 мм), либо исследуются два и более основания, различных по диаметру. Процесс уточнения показаний прибора называется калибровкой. Для калибровки устройство комплектуется образцами стали и алюминия, которые служат объектами контроля, а также для сравнения полученных показаний.

Чем заменить магнитный толщиномер, если основание не магнитно?

Как было обещано, сейчас расскажем о других видах толщиномеров. Помимо магнитного, выпускаются механические, ультразвуковые приборы, вихретоковые, электромагнитные и электромагнитно-вихретоковые. В ремонтных и строительных работах популярностью пользуется механический толщиномер. Предназначен он для того, чтобы проконтролировать слой краски, которым покрывают поверхность. Это обеспечивает, во-первых, равномерное нанесение покрытия, во-вторых, уменьшает расход материала.

Часто влажный лак или краска выглядят, как будто они нанесены равномерно. Однако после высыхания обнаруживаются неплотно закрашенные участки поверхности. Это устраняется путем закрашивания этих мест и последующего покрытия краской всего объекта, что приводит к двойному перерасходу. Механический толщиномер используют для снятия данных о влажном слое лакокрасочных материалов, которыми был покрыт объект. Щуп или гребенка имеет маркеры на зубцах. Его прижимают к поверхности на несколько секунд, затем осматривают. Относительно отпечатка материала на зубцах между маркерами делают вывод о толщине слоя.

Для оснований из цветных металлов используют вихретоковые толщиномеры. В основе лежит принцип вихревых токов, или токов Фуко. Через катушку проходит ток (частота свыше 1 МГц), который порождает переменное магнитное поле, что приводит в действие датчики на щупе. При прижатии прибора к токопроводящему материалу (поверхность объекта) происходит порождение на нем токов Фуко. Эти вихревые токи генерируют свои, противоположные электромагнитные поля, которые подвергаются измерению датчиками.

Подводя итоги, следует сказать, что в названии прибора заложена подсказка о принципе его работы: в магнитном толщиномере используется принцип взаимодействия магнита, встроенного в устройство, и магнитной поверхности объекта. Его применяют для измерения толщины покрытия на основании из черных металлов. В механическом толщиномере следует визуально осмотреть краску на зубцах щупа и сделать вывод о данных. С точки зрения точности показателей он является самым неточным. Вихретоковая модель помогает там, где невозможно использовать магнит – на непроводящей поверхности и цветных металлах.

Ссылка на основную публикацию
Привод генератора ваз 2114
И так эта запись будет о том как поднять напряжение на холостом ходу.Многие наверное замечали как стоя вечером у светофора...
Почему не выключаются фары на гранте
Посоветуйте Друзья, может приключалась с кем столь коварная ситуебинка?Подъезжаю на карете я к поместью своему, перевожу кружок световыключающий в выключенное...
Почему не греет печка лада гранта
Всем привет дорогие друзья, особенно владельцы автомобиля Lada Granta. Если вы зашли на данную страницу значит, вас волнует вопрос, почему...
Привод замка двери уаз
Недавно обнаружил, что машина перестала блокировать двери при постановке на охрану. При этом я уже давно наблюдал вялую работу привода...
Adblock detector